User Tools

Site Tools


ai_disaster_recovery

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
ai_disaster_recovery [2025/05/26 14:36] – [Purpose] eagleeyenebulaai_disaster_recovery [2025/05/26 14:44] (current) – [Best Practices] eagleeyenebula
Line 22: Line 22:
  
 1. **Checkpoint Management**: 1. **Checkpoint Management**:
-   Save the current state (`data`) of any pipeline step by associating it with a unique `step_name`+   Save the current state (**data**) of any pipeline step by associating it with a unique **step_name**
-   Checkpoints are stored in an internal dictionary for immediate access.+   Checkpoints are stored in an internal dictionary for immediate access.
  
 2. **Rollback Mechanism**: 2. **Rollback Mechanism**:
-   Roll back to a previously saved state by specifying a `step_name`+   Roll back to a previously saved state by specifying a **step_name**
-   Retrieve the corresponding state and reinitialize the pipeline from that step.+   Retrieve the corresponding state and reinitialize the pipeline from that step.
  
 3. **Scalability**: 3. **Scalability**:
-   Extend the module to integrate with external storage systems such as cloud storage, relational/NoSQL databases, or distributed caching layers for large-scale checkpoint management.+   Extend the module to integrate with external storage systems such as cloud storage, **relational/NoSQL** databases, or distributed caching layers for large-scale checkpoint management.
  
 4. **Logging and Traceability**: 4. **Logging and Traceability**:
-   Built-in logging to track when checkpoints are saved or rolled back, facilitating debugging and pipeline monitoring.+   Built-in logging to track when checkpoints are saved or rolled back, facilitating debugging and pipeline monitoring.
  
 5. **Fault Isolation**: 5. **Fault Isolation**:
-   Enables isolation of faults by restoring the last known good checkpoint, reducing the impact of pipeline errors.+   Enables isolation of faults by restoring the last known good checkpoint, reducing the impact of pipeline errors.
  
 6. **Extensibility**: 6. **Extensibility**:
-   Increase functionality by overriding methods to design customized recovery solutions (e.g., versioned checkpoints, distributed checkpointing). +   Increase functionality by overriding methods to design customized recovery solutions (e.g., versioned checkpoints, distributed checkpointing).
- +
---- +
 ===== Architecture ===== ===== Architecture =====
  
Line 49: Line 46:
 ==== Core Components ==== ==== Core Components ====
  
-1. **`save_checkpoint(step_name, data)`**: +1. **save_checkpoint(step_name, data)**: 
-   Saves the current state of the pipeline for the specified step. +   Saves the current state of the pipeline for the specified step. 
-   Logs the operation to ensure visibility in execution traces.+   Logs the operation to ensure visibility in execution traces.
        
-2. **`rollback_to_checkpoint(step_name)`**: +2. **rollback_to_checkpoint(step_name)**: 
-   Retrieves the saved state for the specified step name. +   Retrieves the saved state for the specified step name. 
-   Allows the pipeline to resume execution from the last known good state.+   Allows the pipeline to resume execution from the last known good state.
  
-3. **Checkpoints Store (`self.checkpoints`)**: +3. **Checkpoints Store (self.checkpoints)**: 
-   Maintains the in-memory storage for all pipeline checkpoints. +   Maintains the in-memory storage for all pipeline checkpoints. 
-   Key: `step_name(uniquely identifies the pipeline step). +   Key: **step_name** (uniquely identifies the pipeline step). 
-   Value: Serialized state (`data`) to restore the pipeline.+   Value: Serialized state (**data**) to restore the pipeline.
  
 ==== Class Definition ==== ==== Class Definition ====
  
-```python+<code> 
 +python
 import logging import logging
  
Line 92: Line 90:
         logging.info(f"Rolling back to checkpoint: {step_name}")         logging.info(f"Rolling back to checkpoint: {step_name}")
         return self.checkpoints.get(step_name, None)         return self.checkpoints.get(step_name, None)
-``` +</code>
- +
----+
  
 ===== Usage Examples ===== ===== Usage Examples =====
Line 104: Line 100:
 The following example demonstrates how to save pipeline checkpoints and perform a rollback: The following example demonstrates how to save pipeline checkpoints and perform a rollback:
  
-```python+<code> 
 +python
 from ai_disaster_recovery import DisasterRecovery from ai_disaster_recovery import DisasterRecovery
- +</code> 
-# Initialize the recovery manager+**Initialize the recovery manager** 
 +<code>
 recovery_manager = DisasterRecovery() recovery_manager = DisasterRecovery()
- +</code> 
-# Save checkpoints for pipeline steps+**Save checkpoints for pipeline steps** 
 +<code>
 recovery_manager.save_checkpoint("step_1", {"data": [1, 2, 3]}) recovery_manager.save_checkpoint("step_1", {"data": [1, 2, 3]})
 recovery_manager.save_checkpoint("step_2", {"data": [4, 5, 6]}) recovery_manager.save_checkpoint("step_2", {"data": [4, 5, 6]})
- +</code> 
-# Rollback to a checkpoint+**Rollback to a checkpoint** 
 +<code>
 state_step_2 = recovery_manager.rollback_to_checkpoint("step_2") state_step_2 = recovery_manager.rollback_to_checkpoint("step_2")
 print(f"Restored state for step_2: {state_step_2}") print(f"Restored state for step_2: {state_step_2}")
- +</code> 
-# Rollback to an undefined checkpoint+**Rollback to an undefined checkpoint** 
 +<code>
 state_invalid = recovery_manager.rollback_to_checkpoint("missing_step") state_invalid = recovery_manager.rollback_to_checkpoint("missing_step")
 print(f"Restored state for missing step: {state_invalid}") print(f"Restored state for missing step: {state_invalid}")
-```+</code>
  
 **Expected Output:** **Expected Output:**
Line 130: Line 131:
 In scenarios requiring persistent storage of checkpoints, the module can be extended with custom serialization. Here’s how to save checkpoints to disk: In scenarios requiring persistent storage of checkpoints, the module can be extended with custom serialization. Here’s how to save checkpoints to disk:
  
-```python+<code> 
 +python
 import pickle import pickle
 from ai_disaster_recovery import DisasterRecovery from ai_disaster_recovery import DisasterRecovery
Line 155: Line 157:
             logging.warning(f"Checkpoint file not found for step: {step_name}")             logging.warning(f"Checkpoint file not found for step: {step_name}")
             return None             return None
- +<code> 
-# Usage+**Usage** 
 +<code>
 persistent_recovery = PersistentDisasterRecovery() persistent_recovery = PersistentDisasterRecovery()
- +</code> 
-# Save and rollback with disk persistence+**Save and rollback with disk persistence** 
 +<code>
 persistent_recovery.save_checkpoint("step_3", {"data": [7, 8, 9]}) persistent_recovery.save_checkpoint("step_3", {"data": [7, 8, 9]})
 restored_data = persistent_recovery.rollback_to_checkpoint("step_3") restored_data = persistent_recovery.rollback_to_checkpoint("step_3")
 print(f"Restored data: {restored_data}") print(f"Restored data: {restored_data}")
-```+</code>
  
 **Expected Output:** **Expected Output:**
- 
- 
---- 
- 
 ===== Use Cases ===== ===== Use Cases =====
  
 1. **AI Model Training Pipelines**: 1. **AI Model Training Pipelines**:
-   Save model state after every training epoch for fault recovery.+   Save model state after every training epoch for fault recovery.
  
 2. **Data Processing Pipelines**: 2. **Data Processing Pipelines**:
-   Save intermediate transformation results to prevent reprocessing from scratch in the event of failure.+   Save intermediate transformation results to prevent reprocessing from scratch in the event of failure.
  
 3. **Workflow Management Systems**: 3. **Workflow Management Systems**:
-   Use checkpoints to incrementally save the state of a multi-step workflow.+   Use checkpoints to incrementally save the state of a multi-step workflow.
  
 4. **Debugging Complex Errors**: 4. **Debugging Complex Errors**:
-   Rollback to a known-good state for error analysis and testing. +   Rollback to a known-good state for error analysis and testing.
- +
----+
  
 ===== Best Practices ===== ===== Best Practices =====
  
 1. **Granular Checkpoints**: 1. **Granular Checkpoints**:
-   Save checkpoints at critical pipeline steps (e.g., post-feature extraction, model training).+   Save checkpoints at critical pipeline steps (e.g., post-feature extraction, model training).
  
 2. **Logging and Debugging**: 2. **Logging and Debugging**:
-   Leverage logging to monitor checkpoint creation and rollback actions.+   Leverage logging to monitor checkpoint creation and rollback actions.
  
 3. **Serialization**: 3. **Serialization**:
-   Use serialization (e.g., `pickle``JSON`, or database) for persistent checkpoint management, especially in distributed systems.+   Use serialization (e.g., **pickle****JSON**, or database) for persistent checkpoint management, especially in distributed systems.
  
 4. **Version Control**: 4. **Version Control**:
-   Employ versioning for checkpoints to avoid overwriting critical recovery points.+   Employ versioning for checkpoints to avoid overwriting critical recovery points.
  
 5. **Secure Recovery**: 5. **Secure Recovery**:
-   When using external storage (e.g., cloud), ensure encryption to secure sensitive pipeline states. +   When using external storage (e.g., cloud), ensure encryption to secure sensitive pipeline states.
- +
---- +
 ===== Conclusion ===== ===== Conclusion =====
  
ai_disaster_recovery.1748270168.txt.gz · Last modified: 2025/05/26 14:36 by eagleeyenebula