User Tools

Site Tools


ai_data_validation

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
ai_data_validation [2025/05/25 20:07] – [1. Handling Different Data Types] eagleeyenebulaai_data_validation [2025/05/25 20:10] (current) – [Extensions & Best Practices] eagleeyenebula
Line 104: Line 104:
  
 Check if numeric data values lie within a specific range: Check if numeric data values lie within a specific range:
- +<code> 
-```python+python
 class ThresholdValidation(DataValidation): class ThresholdValidation(DataValidation):
     @staticmethod     @staticmethod
Line 120: Line 120:
 if not ThresholdValidation.validate(data, 0, 100): if not ThresholdValidation.validate(data, 0, 100):
     print("Failed Validation: Data out of acceptable range.")     print("Failed Validation: Data out of acceptable range.")
-```+</code>
  
 ==== 3. JSON Schema Validation ==== ==== 3. JSON Schema Validation ====
Line 126: Line 126:
 For structured datasets, integrate JSON schema validation using libraries like `jsonschema`: For structured datasets, integrate JSON schema validation using libraries like `jsonschema`:
  
-```python+<code> 
 +python
 import jsonschema import jsonschema
 from jsonschema import validate from jsonschema import validate
Line 140: Line 141:
             logging.error(f"Schema validation failed: {err}")             logging.error(f"Schema validation failed: {err}")
             return False             return False
 +</code>
 # Sample JSON and Schema # Sample JSON and Schema
 +<code>
 data = {"name": "John", "age": 30} data = {"name": "John", "age": 30}
 schema = { schema = {
Line 154: Line 156:
 if JsonSchemaValidation.validate(data, schema): if JsonSchemaValidation.validate(data, schema):
     print("JSON Schema Validated Successfully")     print("JSON Schema Validated Successfully")
-``` +</code>
- +
---- +
 ===== Extensions & Best Practices ===== ===== Extensions & Best Practices =====
  
Line 167: Line 166:
   * Use detailed logging to ensure traceability.   * Use detailed logging to ensure traceability.
   * Modularize validation logic for usability across pipelines.   * Modularize validation logic for usability across pipelines.
- 
---- 
  
 ===== Conclusion ===== ===== Conclusion =====
  
 The **AI Data Validation** system is both flexible and powerful, enabling basic to advanced data integrity checks. Its integration into web-based systems and extensibility make it an essential component in data pipelines. The **AI Data Validation** system is both flexible and powerful, enabling basic to advanced data integrity checks. Its integration into web-based systems and extensibility make it an essential component in data pipelines.
ai_data_validation.1748203637.txt.gz · Last modified: 2025/05/25 20:07 by eagleeyenebula