ai_data_validation
Differences
This shows you the differences between two versions of the page.
| Next revision | Previous revision | ||
| ai_data_validation [2025/04/22 15:06] – created eagleeyenebula | ai_data_validation [2025/05/25 20:10] (current) – [Extensions & Best Practices] eagleeyenebula | ||
|---|---|---|---|
| Line 1: | Line 1: | ||
| ====== AI Data Validation ====== | ====== AI Data Validation ====== | ||
| + | * **[[https:// | ||
| The **AI Data Validation** system is a key component designed to ensure data integrity, schema consistency, | The **AI Data Validation** system is a key component designed to ensure data integrity, schema consistency, | ||
| - | This document elaborates on the functionality of **AI Data Validation**, | + | {{youtube> |
| - | --- | + | ------------------------------------------------------------- |
| + | This document elaborates on the functionality of **AI Data Validation**, | ||
| ===== Core Functionalities ===== | ===== Core Functionalities ===== | ||
| Line 26: | Line 27: | ||
| - The corresponding HTML templates display validation summaries, statistics, and reports, offering integration for UI/UX systems and reporting dashboards. | - The corresponding HTML templates display validation summaries, statistics, and reports, offering integration for UI/UX systems and reporting dashboards. | ||
| - | --- | + | ===== DataValidation.py Class Documentation ===== |
| - | ===== `DataValidation.py` Class Documentation ===== | + | The **DataValidation** class is the backbone of this system. It includes a static method |
| - | + | ||
| - | The **`DataValidation`** class is the backbone of this system. It includes a static method | + | |
| === Class Design === | === Class Design === | ||
| - | ```python | + | < |
| + | python | ||
| import logging | import logging | ||
| Line 58: | Line 58: | ||
| logging.info(" | logging.info(" | ||
| return True | return True | ||
| - | ``` | + | </ |
| Key Points: | Key Points: | ||
| 1. **Logging Integration**: | 1. **Logging Integration**: | ||
| - | - Provides | + | - Provides |
| - | - Returns | + | - Returns |
| 2. **Validation Rules**: | 2. **Validation Rules**: | ||
| - Checks if data is non-empty. | - Checks if data is non-empty. | ||
| - | - Scans for `None` values in the dataset. | + | - Scans for **None** values in the dataset. |
| 3. **Modular**: | 3. **Modular**: | ||
| - The static method format ensures compatibility when extending or subclassing. | - The static method format ensures compatibility when extending or subclassing. | ||
| - | --- | ||
| - | ===== Template Integration ===== | ||
| - | |||
| - | The accompanying HTML template (`ai_data_validation.html`) is designed to integrate results from the validation system into web dashboards or front-end applications. It provides a framework to display validation results in real-time, including warnings, statistics, and visual feedback. | ||
| - | |||
| - | === Sample Template Structure === | ||
| - | |||
| - | ```html | ||
| - | < | ||
| - | < | ||
| - | < | ||
| - | < | ||
| - | </ | ||
| - | < | ||
| - | < | ||
| - | <div id=" | ||
| - | Validation Status: <span style=" | ||
| - | </ | ||
| - | <div id=" | ||
| - | < | ||
| - | <ul> | ||
| - | < | ||
| - | </ul> | ||
| - | </ | ||
| - | < | ||
| - | < | ||
| - | </ | ||
| - | </ | ||
| - | </ | ||
| - | ``` | ||
| - | |||
| - | Key Features of Template: | ||
| - | * **Dynamic Status Update**: Displays whether the validation passed or failed using a clear color-coded visual. | ||
| - | * **Error Reporting**: | ||
| - | * **Extensibility**: | ||
| - | |||
| - | --- | ||
| ===== Advanced Usage Examples ===== | ===== Advanced Usage Examples ===== | ||
| Line 119: | Line 83: | ||
| Expand the basic validation to enforce uniform data type rules. For example, ensuring all elements are integers: | Expand the basic validation to enforce uniform data type rules. For example, ensuring all elements are integers: | ||
| - | + | < | |
| - | ```python | + | python |
| class DataTypeValidation(DataValidation): | class DataTypeValidation(DataValidation): | ||
| @staticmethod | @staticmethod | ||
| Line 135: | Line 99: | ||
| if not DataTypeValidation.validate(data): | if not DataTypeValidation.validate(data): | ||
| print(" | print(" | ||
| - | ``` | + | </ |
| ==== 2. Threshold-based Validation ==== | ==== 2. Threshold-based Validation ==== | ||
| Check if numeric data values lie within a specific range: | Check if numeric data values lie within a specific range: | ||
| - | + | < | |
| - | ```python | + | python |
| class ThresholdValidation(DataValidation): | class ThresholdValidation(DataValidation): | ||
| @staticmethod | @staticmethod | ||
| Line 156: | Line 120: | ||
| if not ThresholdValidation.validate(data, | if not ThresholdValidation.validate(data, | ||
| print(" | print(" | ||
| - | ``` | + | </ |
| ==== 3. JSON Schema Validation ==== | ==== 3. JSON Schema Validation ==== | ||
| Line 162: | Line 126: | ||
| For structured datasets, integrate JSON schema validation using libraries like `jsonschema`: | For structured datasets, integrate JSON schema validation using libraries like `jsonschema`: | ||
| - | ```python | + | < |
| + | python | ||
| import jsonschema | import jsonschema | ||
| from jsonschema import validate | from jsonschema import validate | ||
| Line 176: | Line 141: | ||
| logging.error(f" | logging.error(f" | ||
| return False | return False | ||
| + | </ | ||
| # Sample JSON and Schema | # Sample JSON and Schema | ||
| + | < | ||
| data = {" | data = {" | ||
| schema = { | schema = { | ||
| Line 190: | Line 156: | ||
| if JsonSchemaValidation.validate(data, | if JsonSchemaValidation.validate(data, | ||
| print(" | print(" | ||
| - | ``` | + | </ |
| - | + | ||
| - | --- | + | |
| ===== Extensions & Best Practices ===== | ===== Extensions & Best Practices ===== | ||
| Line 203: | Line 166: | ||
| * Use detailed logging to ensure traceability. | * Use detailed logging to ensure traceability. | ||
| * Modularize validation logic for usability across pipelines. | * Modularize validation logic for usability across pipelines. | ||
| - | |||
| - | --- | ||
| ===== Conclusion ===== | ===== Conclusion ===== | ||
| The **AI Data Validation** system is both flexible and powerful, enabling basic to advanced data integrity checks. Its integration into web-based systems and extensibility make it an essential component in data pipelines. | The **AI Data Validation** system is both flexible and powerful, enabling basic to advanced data integrity checks. Its integration into web-based systems and extensibility make it an essential component in data pipelines. | ||
ai_data_validation.1745334405.txt.gz · Last modified: 2025/04/22 15:06 by eagleeyenebula
