ai_data_registry
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| ai_data_registry [2025/05/25 19:49] – [Advanced Examples] eagleeyenebula | ai_data_registry [2025/05/25 19:55] (current) – [Conclusion] eagleeyenebula | ||
|---|---|---|---|
| Line 151: | Line 151: | ||
| === 2. Custom Storage Paths === | === 2. Custom Storage Paths === | ||
| - | By default, the **DataCatalog** saves the registry in `data_registry.json`. You can configure it to use a different file path when needed. | + | By default, the **DataCatalog** saves the registry in **data_registry.json**. You can configure it to use a different file path when needed. |
| - | < | ||
| # **Initialize the catalog with a custom file path** | # **Initialize the catalog with a custom file path** | ||
| + | < | ||
| catalog = DataCatalog(registry_path="/ | catalog = DataCatalog(registry_path="/ | ||
| + | </ | ||
| # **Add an entry to the catalog** | # **Add an entry to the catalog** | ||
| + | < | ||
| catalog.add_entry(" | catalog.add_entry(" | ||
| " | " | ||
| Line 164: | Line 166: | ||
| </ | </ | ||
| # **Output the catalog contents** | # **Output the catalog contents** | ||
| + | < | ||
| print(catalog.load_catalog()) | print(catalog.load_catalog()) | ||
| </ | </ | ||
| Line 206: | Line 209: | ||
| </ | </ | ||
| # **Output the catalog** | # **Output the catalog** | ||
| + | < | ||
| print(catalog.load_catalog()) | print(catalog.load_catalog()) | ||
| </ | </ | ||
| Line 230: | Line 234: | ||
| ==== Best Practices ==== | ==== Best Practices ==== | ||
| - | To get the most out of **DataCatalog**, | + | To get the most out of **DataCatalog**, |
| - | * **Use Metadata Consistently**: | + | * **Use metadata consistently** Add fields like **source**, **size**, and **tags** to all datasets |
| - | Ensure that metadata | + | * **Secure |
| - | | + | * **Version |
| - | * **Secure | + | * **Automate |
| - | | + | |
| - | + | ||
| - | * **Version-Control Your Datasets**: | + | |
| - | Use versioning (e.g., | + | |
| - | + | ||
| - | * **Automate | + | |
| - | Integrate registry updates using pipeline automation | + | |
| - | + | ||
| - | --- | + | |
| ==== Extensibility ==== | ==== Extensibility ==== | ||
| Line 263: | Line 258: | ||
| ==== Conclusion ==== | ==== Conclusion ==== | ||
| - | The **DataCatalog** module is a scalable and flexible solution for managing metadata registries. With support for versioning, extensibility, | + | The **DataCatalog** module is a scalable and flexible solution for managing metadata registries. With support for versioning, extensibility, |
| - | + | ||
| - | Whether you’re working on small-scale or enterprise-level pipelines, the **DataCatalog** provides all the tools you need for clean and structured data management. | + | |
ai_data_registry.1748202590.txt.gz · Last modified: 2025/05/25 19:49 by eagleeyenebula
