User Tools

Site Tools


ai_data_registry

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
ai_data_registry [2025/05/25 19:16] – [Table of Contents] eagleeyenebulaai_data_registry [2025/05/25 19:55] (current) – [Conclusion] eagleeyenebula
Line 10: Line 10:
 The **DataCatalog** class is critical for managing datasets, storing metadata, and facilitating searches or audits in large data pipelines. Tasks such as loading, saving, and updating dataset logs are automated for seamless integration into workflows. The **DataCatalog** class is critical for managing datasets, storing metadata, and facilitating searches or audits in large data pipelines. Tasks such as loading, saving, and updating dataset logs are automated for seamless integration into workflows.
  
-The corresponding **`ai_data_registry.html`** covers GUI-driven interactions and use cases for dataset registration, visual cataloging, and metadata export for regulatory purposes.+The corresponding **ai_data_registry.html** covers GUI-driven interactions and use cases for dataset registration, visual cataloging, and metadata export for regulatory purposes.
  
 With this module, you can: With this module, you can:
Line 33: Line 33:
  
 ===== Purpose ===== ===== Purpose =====
-The **`ai_data_registry.py`** module is designed to: +The **ai_data_registry.py** module is designed to: 
-  1. Provide a simple yet effective mechanism for registering and querying datasets and metadata. + 
-  2. Ensure retrieval of standardized information about datasets, including their structure, size, and source. +  Provide a simple yet effective mechanism for registering and querying datasets and metadata. 
-  3. Assist with automation in ETL workflows, ensuring datasets are persistently tracked across transformations and pipes. + 
-  4. Facilitate compliance and governance by maintaining comprehensive dataset logs, metadata, and time records.+  Ensure retrieval of standardized information about datasets, including their structure, size, and source. 
 + 
 +  Assist with automation in **ETL** workflows, ensuring datasets are persistently tracked across transformations and pipes. 
 + 
 +  Facilitate compliance and governance by maintaining comprehensive dataset logs, metadata, and time records.
  
 ==== Suitable Use Cases ==== ==== Suitable Use Cases ====
Line 51: Line 55:
   * **Dataset Registration:**   * **Dataset Registration:**
     - Easily add datasets to the registry with custom metadata.     - Easily add datasets to the registry with custom metadata.
-    - Automatically tags datasets with `date_addedtimestamps.+    - Automatically tags datasets with **date_added** timestamps.
  
   * **Persistent Storage:**   * **Persistent Storage:**
-    - Datasets and metadata are saved in JSON format for reliability and readability. +    - Datasets and metadata are saved in **JSON** format for reliability and readability. 
-    - Supports a default catalog file (`data_registry.json`) or custom file paths.+    - Supports a default catalog file (**data_registry.json**) or custom file paths.
  
   * **Automated Logging:**   * **Automated Logging:**
Line 62: Line 66:
  
   * **Error Handling:**   * **Error Handling:**
-    - Recovers from failures, such as file access issues or malformed JSON files.+    - Recovers from failures, such as file access issues or malformed **JSON** files.
  
   * **Extensive Metadata Support:**   * **Extensive Metadata Support:**
Line 75: Line 79:
  
 The **DataCatalog** class provides three main functions for dataset registry management: The **DataCatalog** class provides three main functions for dataset registry management:
-  1. **`add_entry:`** Adds a dataset with metadata to the registry. +  * **add_entry:** Adds a dataset with metadata to the registry. 
-  2. **`load_catalog:`** Loads the existing catalog stored in a local JSON file. +  * **load_catalog:** Loads the existing catalog stored in a local **JSON** file. 
-  3. **`save_catalog:`** Saves or updates the registry, ensuring persistent storage.+  * **save_catalog:** Saves or updates the registry, ensuring persistent storage.
  
 ==== Adding a Dataset ==== ==== Adding a Dataset ====
-The `add_entrymethod accepts a dataset name and metadata as inputs. Metadata can be any dictionary describing meaningful attributes (e.g., size, source, dependencies).+The **add_entry** method accepts a dataset name and metadata as inputs. Metadata can be any dictionary describing meaningful attributes (e.g., size, source, dependencies).
  
 **Example Metadata Record:** **Example Metadata Record:**
-```json+<code> 
 +json
 { {
     "dataset_name": {     "dataset_name": {
Line 94: Line 99:
     }     }
 } }
-```+</code>
  
 ---- ----
Line 105: Line 110:
 Add a dataset with metadata and manage the registry. Add a dataset with metadata and manage the registry.
  
-```python+<code> 
 +python
 from ai_data_registry import DataCatalog from ai_data_registry import DataCatalog
- +</code> 
-# Initialize the catalog+**Initialize the catalog** 
 +<code>
 catalog = DataCatalog() catalog = DataCatalog()
- +</code> 
-# Add a dataset entry+**Add a dataset entry** 
 +<code>
 catalog.add_entry("customer_data", { catalog.add_entry("customer_data", {
     "source": "internal API",     "source": "internal API",
Line 117: Line 125:
     "format": "CSV"     "format": "CSV"
 }) })
- +</code> 
-# Load catalog data+**Load catalog data** 
 +<code>
 data = catalog.load_catalog() data = catalog.load_catalog()
 print("Current Registry:", data) print("Current Registry:", data)
-```+</code>
  
 ---- ----
Line 130: Line 139:
 You can add more intricate metadata, such as tags and related datasets, to help track high-level attributes of your datasets. You can add more intricate metadata, such as tags and related datasets, to help track high-level attributes of your datasets.
  
-<code python>+<code>
 catalog.add_entry("model_training_data", { catalog.add_entry("model_training_data", {
     "source": "AWS S3",     "source": "AWS S3",
Line 142: Line 151:
  
 === 2. Custom Storage Paths === === 2. Custom Storage Paths ===
-By default, the **DataCatalog** saves the registry in `data_registry.json`. You can configure it to use a different file path when needed.+By default, the **DataCatalog** saves the registry in **data_registry.json**. You can configure it to use a different file path when needed.
  
-<code python> 
-# Initialize the catalog with a custom file path 
-catalog = DataCatalog(registry_path="/tmp/custom_data_registry.json") 
  
-# Add an entry to the catalog+**Initialize the catalog with a custom file path** 
 +<code> 
 +catalog = DataCatalog(registry_path="/tmp/custom_data_registry.json"
 +</code> 
 +# **Add an entry to the catalog** 
 +<code>
 catalog.add_entry("experiment_data", { catalog.add_entry("experiment_data", {
     "source": "API",     "source": "API",
     "size": "5 GB"     "size": "5 GB"
 }) })
- +</code> 
-# Output the catalog contents+**Output the catalog contents** 
 +<code>
 print(catalog.load_catalog()) print(catalog.load_catalog())
 </code> </code>
Line 165: Line 177:
 Combine **DataCatalog** with versioning capabilities. This allows you to track the progress of specific dataset versions directly in your pipeline. Combine **DataCatalog** with versioning capabilities. This allows you to track the progress of specific dataset versions directly in your pipeline.
  
-<code python>+<code>
 def versioned_entry(catalog, dataset_name, version, **kwargs): def versioned_entry(catalog, dataset_name, version, **kwargs):
     """     """
Line 181: Line 193:
     }     }
     catalog.add_entry(dataset_name, metadata)     catalog.add_entry(dataset_name, metadata)
- +</code> 
-# Initialize catalog+**Initialize catalog** 
 +<code>
 catalog = DataCatalog() catalog = DataCatalog()
- +</code> 
-# Add a versioned entry+**Add a versioned entry** 
 +<code>
 versioned_entry( versioned_entry(
     catalog,     catalog,
Line 193: Line 207:
     size="2 GB"     size="2 GB"
 ) )
- +</code> 
-# Output the catalog+**Output the catalog** 
 +<code>
 print(catalog.load_catalog()) print(catalog.load_catalog())
 </code> </code>
Line 200: Line 215:
 **Expected Output:** **Expected Output:**
  
-<code json>+<code>
 { {
     "customer_data": {     "customer_data": {
Line 219: Line 234:
 ==== Best Practices ==== ==== Best Practices ====
  
-To get the most out of **DataCatalog**, consider applying the following best practices:+To get the most out of **DataCatalog**, apply these best practices:
  
-  * **Use Metadata Consistently**:   +  * **Use metadata consistently** Add fields like **source****size**, and **tags** to all datasets for uniformity. 
-    Ensure that metadata fields like `source``size`, and `tags` are added across all datasets to enable uniformity. +  * **Secure the registry file** Protect **data_registry.json** with proper file permissions to prevent unauthorized access. 
-     +  * **Version datasets** Track changes over time using clear versioning (e.g., `v1.0.0`). 
-  * **Secure Your Registry File**:   +  * **Automate updates** Use tools like **Airflow** or **Prefect** to keep the registry accurate and up to date.
-    Protect the catalog registry (`data_registry.json`) using appropriate file permissions to prevent deletion or unauthorized access. +
- +
-  * **Version-Control Your Datasets**:   +
-    Use versioning (e.g., "v1.0.0"to track iterative changes in datasets over time. +
- +
-  * **Automate Updates**:   +
-    Integrate registry updates using pipeline automation tools like **Airflow** or task orchestrators like **Prefect** to ensure accuracy. +
- +
----+
  
 ==== Extensibility ==== ==== Extensibility ====
Line 252: Line 258:
 ==== Conclusion ==== ==== Conclusion ====
  
-The **DataCatalog** module is a scalable and flexible solution for managing metadata registries. With support for versioning, extensibility, and pipeline integration, it ensures that complex workflows can maintain data reproducibility, traceability, and governance. +The **DataCatalog** module is a scalable and flexible solution for managing metadata registries. With support for versioning, extensibility, and pipeline integration, it ensures that complex workflows can maintain data reproducibility, traceability, and governance. Whether you’re working on small-scale or enterprise-level pipelines, the **DataCatalog** provides all the tools you need for clean and structured data management.
- +
-Whether you’re working on small-scale or enterprise-level pipelines, the **DataCatalog** provides all the tools you need for clean and structured data management.+
ai_data_registry.1748200600.txt.gz · Last modified: 2025/05/25 19:16 by eagleeyenebula