ai_data_registry
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| ai_data_registry [2025/04/25 23:40] – external edit 127.0.0.1 | ai_data_registry [2025/05/25 19:55] (current) – [Conclusion] eagleeyenebula | ||
|---|---|---|---|
| Line 2: | Line 2: | ||
| * **[[https:// | * **[[https:// | ||
| ===== Overview ===== | ===== Overview ===== | ||
| - | The **`AI Data Registry`** module provides a structured and robust system for maintaining a registry of datasets with associated metadata. It allows organizations to track key details about datasets used in AI/ML pipelines, ensuring reproducibility, | + | The **AI Data Registry** module provides a structured and robust system for maintaining a registry of datasets with associated metadata. It allows organizations to track key details about datasets used in AI/ML pipelines, ensuring reproducibility, |
| - | The **`DataCatalog`** class is critical for managing datasets, storing metadata, and facilitating searches or audits in large data pipelines. Tasks such as loading, saving, and updating dataset logs are automated for seamless integration into workflows. | + | {{youtube> |
| - | The corresponding **`ai_data_registry.html`** covers GUI-driven interactions and use cases for dataset registration, | + | ------------------------------------------------------------- |
| + | |||
| + | The **DataCatalog** class is critical for managing datasets, storing metadata, and facilitating searches or audits in large data pipelines. Tasks such as loading, saving, and updating dataset logs are automated for seamless integration into workflows. | ||
| + | |||
| + | The corresponding **ai_data_registry.html** covers GUI-driven interactions and use cases for dataset registration, | ||
| With this module, you can: | With this module, you can: | ||
| Line 15: | Line 19: | ||
| ---- | ---- | ||
| - | ===== Table of Contents ===== | ||
| - | * [[# | ||
| - | * [[# | ||
| - | * [[#Key Features|Key Features]] | ||
| - | * [[#How It Works|How It Works]] | ||
| - | * [[#Adding a Dataset|Adding a Dataset]] | ||
| - | * [[#Loading the Catalog|Loading the Catalog]] | ||
| - | * [[#Saving the Catalog|Saving the Catalog]] | ||
| - | * [[#Logging and Error Handling|Logging and Error Handling]] | ||
| - | * [[# | ||
| - | * [[# | ||
| - | * [[#Basic Use Case|Basic Use Case]] | ||
| - | * [[#Advanced Examples|Advanced Examples]] | ||
| - | * [[#Data Entry With Advanced Metadata|Data Entry With Advanced Metadata]] | ||
| - | * [[#Custom Storage Paths|Custom Storage Paths]] | ||
| - | * [[# | ||
| - | * [[#Best Practices|Best Practices]] | ||
| - | * [[# | ||
| - | * [[# | ||
| - | * [[#Future Enhancements|Future Enhancements]] | ||
| - | * [[# | ||
| - | |||
| - | ---- | ||
| ===== Introduction ===== | ===== Introduction ===== | ||
| Line 52: | Line 33: | ||
| ===== Purpose ===== | ===== Purpose ===== | ||
| - | The **`ai_data_registry.py`** module is designed to: | + | The **ai_data_registry.py** module is designed to: |
| - | | + | |
| - | | + | |
| - | | + | |
| - | | + | |
| + | |||
| + | | ||
| + | |||
| + | | ||
| ==== Suitable Use Cases ==== | ==== Suitable Use Cases ==== | ||
| Line 70: | Line 55: | ||
| * **Dataset Registration: | * **Dataset Registration: | ||
| - Easily add datasets to the registry with custom metadata. | - Easily add datasets to the registry with custom metadata. | ||
| - | - Automatically tags datasets with `date_added` timestamps. | + | - Automatically tags datasets with **date_added** timestamps. |
| * **Persistent Storage:** | * **Persistent Storage:** | ||
| - | - Datasets and metadata are saved in JSON format for reliability and readability. | + | - Datasets and metadata are saved in **JSON** format for reliability and readability. |
| - | - Supports a default catalog file (`data_registry.json`) or custom file paths. | + | - Supports a default catalog file (**data_registry.json**) or custom file paths. |
| * **Automated Logging:** | * **Automated Logging:** | ||
| Line 81: | Line 66: | ||
| * **Error Handling:** | * **Error Handling:** | ||
| - | - Recovers from failures, such as file access issues or malformed JSON files. | + | - Recovers from failures, such as file access issues or malformed |
| * **Extensive Metadata Support:** | * **Extensive Metadata Support:** | ||
| Line 94: | Line 79: | ||
| The **DataCatalog** class provides three main functions for dataset registry management: | The **DataCatalog** class provides three main functions for dataset registry management: | ||
| - | | + | * **add_entry: |
| - | | + | * **load_catalog: |
| - | | + | * **save_catalog: |
| ==== Adding a Dataset ==== | ==== Adding a Dataset ==== | ||
| - | The `add_entry` method accepts a dataset name and metadata as inputs. Metadata can be any dictionary describing meaningful attributes (e.g., size, source, dependencies). | + | The **add_entry** method accepts a dataset name and metadata as inputs. Metadata can be any dictionary describing meaningful attributes (e.g., size, source, dependencies). |
| **Example Metadata Record:** | **Example Metadata Record:** | ||
| - | ```json | + | < |
| + | json | ||
| { | { | ||
| " | " | ||
| Line 113: | Line 99: | ||
| } | } | ||
| } | } | ||
| - | ``` | + | </ |
| ---- | ---- | ||
| Line 124: | Line 110: | ||
| Add a dataset with metadata and manage the registry. | Add a dataset with metadata and manage the registry. | ||
| - | ```python | + | < |
| + | python | ||
| from ai_data_registry import DataCatalog | from ai_data_registry import DataCatalog | ||
| - | + | </ | |
| - | # Initialize the catalog | + | # **Initialize the catalog** |
| + | < | ||
| catalog = DataCatalog() | catalog = DataCatalog() | ||
| - | + | </ | |
| - | # Add a dataset entry | + | # **Add a dataset entry** |
| + | < | ||
| catalog.add_entry(" | catalog.add_entry(" | ||
| " | " | ||
| Line 136: | Line 125: | ||
| " | " | ||
| }) | }) | ||
| - | + | </ | |
| - | # Load catalog data | + | # **Load catalog data** |
| + | < | ||
| data = catalog.load_catalog() | data = catalog.load_catalog() | ||
| print(" | print(" | ||
| - | ``` | + | </ |
| ---- | ---- | ||
| Line 149: | Line 139: | ||
| You can add more intricate metadata, such as tags and related datasets, to help track high-level attributes of your datasets. | You can add more intricate metadata, such as tags and related datasets, to help track high-level attributes of your datasets. | ||
| - | < | + | < |
| catalog.add_entry(" | catalog.add_entry(" | ||
| " | " | ||
| Line 161: | Line 151: | ||
| === 2. Custom Storage Paths === | === 2. Custom Storage Paths === | ||
| - | By default, the **DataCatalog** saves the registry in `data_registry.json`. You can configure it to use a different file path when needed. | + | By default, the **DataCatalog** saves the registry in **data_registry.json**. You can configure it to use a different file path when needed. |
| - | <code python> | ||
| - | # Initialize the catalog with a custom file path | ||
| - | catalog = DataCatalog(registry_path="/ | ||
| - | # Add an entry to the catalog | + | # **Initialize the catalog with a custom file path** |
| + | < | ||
| + | catalog = DataCatalog(registry_path="/ | ||
| + | </ | ||
| + | # **Add an entry to the catalog** | ||
| + | < | ||
| catalog.add_entry(" | catalog.add_entry(" | ||
| " | " | ||
| " | " | ||
| }) | }) | ||
| - | + | </ | |
| - | # Output the catalog contents | + | # **Output the catalog contents** |
| + | < | ||
| print(catalog.load_catalog()) | print(catalog.load_catalog()) | ||
| </ | </ | ||
| Line 184: | Line 177: | ||
| Combine **DataCatalog** with versioning capabilities. This allows you to track the progress of specific dataset versions directly in your pipeline. | Combine **DataCatalog** with versioning capabilities. This allows you to track the progress of specific dataset versions directly in your pipeline. | ||
| - | < | + | < |
| def versioned_entry(catalog, | def versioned_entry(catalog, | ||
| """ | """ | ||
| Line 200: | Line 193: | ||
| } | } | ||
| catalog.add_entry(dataset_name, | catalog.add_entry(dataset_name, | ||
| - | + | </ | |
| - | # Initialize catalog | + | # **Initialize catalog** |
| + | < | ||
| catalog = DataCatalog() | catalog = DataCatalog() | ||
| - | + | </ | |
| - | # Add a versioned entry | + | # **Add a versioned entry** |
| + | < | ||
| versioned_entry( | versioned_entry( | ||
| catalog, | catalog, | ||
| Line 212: | Line 207: | ||
| size=" | size=" | ||
| ) | ) | ||
| - | + | </ | |
| - | # Output the catalog | + | # **Output the catalog** |
| + | < | ||
| print(catalog.load_catalog()) | print(catalog.load_catalog()) | ||
| </ | </ | ||
| Line 219: | Line 215: | ||
| **Expected Output:** | **Expected Output:** | ||
| - | < | + | < |
| { | { | ||
| " | " | ||
| Line 238: | Line 234: | ||
| ==== Best Practices ==== | ==== Best Practices ==== | ||
| - | To get the most out of **DataCatalog**, | + | To get the most out of **DataCatalog**, |
| - | * **Use Metadata Consistently**: | + | * **Use metadata consistently** Add fields like **source**, **size**, and **tags** to all datasets |
| - | Ensure that metadata | + | * **Secure |
| - | | + | * **Version |
| - | * **Secure | + | * **Automate |
| - | | + | |
| - | + | ||
| - | * **Version-Control Your Datasets**: | + | |
| - | Use versioning (e.g., | + | |
| - | + | ||
| - | * **Automate | + | |
| - | Integrate registry updates using pipeline automation | + | |
| - | + | ||
| - | --- | + | |
| ==== Extensibility ==== | ==== Extensibility ==== | ||
| Line 271: | Line 258: | ||
| ==== Conclusion ==== | ==== Conclusion ==== | ||
| - | The **DataCatalog** module is a scalable and flexible solution for managing metadata registries. With support for versioning, extensibility, | + | The **DataCatalog** module is a scalable and flexible solution for managing metadata registries. With support for versioning, extensibility, |
| - | + | ||
| - | Whether you’re working on small-scale or enterprise-level pipelines, the **DataCatalog** provides all the tools you need for clean and structured data management. | + | |
ai_data_registry.1745624443.txt.gz · Last modified: 2025/04/25 23:40 by 127.0.0.1
