User Tools

Site Tools


ai_data_privacy_manager

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
ai_data_privacy_manager [2025/05/25 18:27] – [Purpose] eagleeyenebulaai_data_privacy_manager [2025/05/25 18:37] (current) – [Best Practices] eagleeyenebula
Line 44: Line 44:
  
   * **Field Anonymization:**   * **Field Anonymization:**
-    Uses SHA-256 hashing to irreversibly anonymize sensitive fields in Python dictionaries.+    Uses SHA-256 hashing to irreversibly anonymize sensitive fields in Python dictionaries.
  
   * **Privacy-Compliant Logging:**   * **Privacy-Compliant Logging:**
-    Automatically anonymizes sensitive fields before securely logging data records.+    Automatically anonymizes sensitive fields before securely logging data records.
  
   * **Customizable Anonymization Fields:**   * **Customizable Anonymization Fields:**
-    Users can specify which fields in a dataset should be anonymized.+    Users can specify which fields in a dataset should be anonymized.
  
   * **Error Handling and Logging:**   * **Error Handling and Logging:**
-    Tracks errors during anonymization or logging operations to ensure robust workflows.+    Tracks errors during anonymization or logging operations to ensure robust workflows.
  
   * **Integration-Friendly Design:**   * **Integration-Friendly Design:**
-    Can be seamlessly integrated into ETL workflows, APIs, or other data pipelines.+    Can be seamlessly integrated into ETL workflows, APIs, or other data pipelines.
  
 ---- ----
Line 63: Line 63:
  
 The **DataPrivacyManager** class provides two key methods: The **DataPrivacyManager** class provides two key methods:
-  1. **Anonymization:** Anonymizes the sensitive fields in records passed to the system using cryptographic hashing. +  **Anonymization:** Anonymizes the sensitive fields in records passed to the system using cryptographic hashing. 
-  2. **Privacy-Compliant Logging:** Logs anonymized records for secure storage and compliance with regulatory standards.+  **Privacy-Compliant Logging:** Logs anonymized records for secure storage and compliance with regulatory standards.
  
 ==== 1. Anonymization ==== ==== 1. Anonymization ====
-The `anonymizemethod applies **SHA-256 hashing** to specific sensitive fields (e.g., `"email"``"phone_number"`) in the provided data.+The **anonymize** method applies **SHA-256 hashing** to specific sensitive fields (e.g., **"email"****"phone_number"**) in the provided data.
  
 **Workflow:** **Workflow:**
-  1. Identify fields to anonymize based on the user's configuration (`anonymization_fields`). +  Identify fields to anonymize based on the user's configuration (**anonymization_fields**). 
-  2. Compute the SHA-256 hash of the field values for irreversible anonymization. +  Compute the SHA-256 hash of the field values for irreversible anonymization. 
-  3. Replace sensitive values in the original dictionary with their hashes while keeping other fields intact.+  Replace sensitive values in the original dictionary with their hashes while keeping other fields intact.
  
 **Example Output:** **Example Output:**
-```plaintext+<code> 
 +plaintext
 Input Data: {'name': 'Alice', 'email': 'alice@example.com'} Input Data: {'name': 'Alice', 'email': 'alice@example.com'}
 Anonymized Data: {'name': 'Alice', 'email': 'f1d2d2f924e986ac86fdf7b36c94bcdf32beec15'} Anonymized Data: {'name': 'Alice', 'email': 'f1d2d2f924e986ac86fdf7b36c94bcdf32beec15'}
-``` +</code>
 ---- ----
  
 ==== 2. Privacy-Compliant Logging ==== ==== 2. Privacy-Compliant Logging ====
-The `log_with_compliancemethod logs anonymized datasets instead of raw fields to protect sensitive information.+The **log_with_compliance** method logs anonymized datasets instead of raw fields to protect sensitive information.
  
 **Workflow:** **Workflow:**
-  1. Call the `anonymizemethod to sanitize sensitive fields. +  Call the **anonymize** method to sanitize sensitive fields. 
-  2. Log the anonymized record via the `logging` library. +  Log the anonymized record via the `logging` library. 
-  3. Catch and log any exceptions encountered during processing.+  Catch and log any exceptions encountered during processing.
  
 Example Log Output: Example Log Output:
-```plaintext+ 
 +<code> 
 +plaintext
 INFO:root:Compliant log: {'name': 'Alice', 'email': 'f1d2d2f924e986ac86fdf7b36c94bcdf32beec15'} INFO:root:Compliant log: {'name': 'Alice', 'email': 'f1d2d2f924e986ac86fdf7b36c94bcdf32beec15'}
-```+</code>
  
 ---- ----
  
 ==== 3. Logging and Error Handling ==== ==== 3. Logging and Error Handling ====
-The module uses Python'`loggingmodule to ensure traceability and robustness:+The module uses Python'**logging** module to ensure traceability and robustness:
   * **Info Logs:** Capture anonymized records for audits or debugging.   * **Info Logs:** Capture anonymized records for audits or debugging.
   * **Error Logs:** Track failures in anonymization or logging operations for troubleshooting.   * **Error Logs:** Track failures in anonymization or logging operations for troubleshooting.
  
 Example Error Log: Example Error Log:
-```plaintext+<code> 
 +plaintext
 ERROR:root:Failed to log data with compliance: Invalid field value encountered. ERROR:root:Failed to log data with compliance: Invalid field value encountered.
-```+</code>
  
 ---- ----
Line 114: Line 117:
  
 ==== Required Libraries ==== ==== Required Libraries ====
-  * **`hashlib`:** Standard Python library for cryptographic hashing (SHA-256). +  * **hashlib:** Standard Python library for cryptographic hashing (SHA-256). 
-  * **`logging`:** Standard Python library for logging anonymization and compliance activities.+  * **logging:** Standard Python library for logging anonymization and compliance activities.
  
 ==== Installation ==== ==== Installation ====
Line 127: Line 130:
  
 ==== Basic Examples ==== ==== Basic Examples ====
-Anonymizing sensitive fields and logging records:+**Anonymizing sensitive fields and logging records:**
  
-```python+<code> 
 +python
 from ai_data_privacy_manager import DataPrivacyManager from ai_data_privacy_manager import DataPrivacyManager
- +</code> 
-# Initialize the privacy manager with fields to anonymize+**Initialize the privacy manager with fields to anonymize** 
 +<code>
 data_privacy_manager = DataPrivacyManager(anonymization_fields=["email", "phone_number"]) data_privacy_manager = DataPrivacyManager(anonymization_fields=["email", "phone_number"])
- +</code> 
-# Input dataset+**Input dataset** 
 +<code>
 user_data = { user_data = {
     "name": "Alice",     "name": "Alice",
Line 141: Line 147:
     "phone_number": "1234567890"     "phone_number": "1234567890"
 } }
- +</code> 
-# Log anonymized data+**Log anonymized data** 
 +<code>
 data_privacy_manager.log_with_compliance(user_data) data_privacy_manager.log_with_compliance(user_data)
-```+</code>
  
 **Example Log Output:** **Example Log Output:**
-```plaintext+<code> 
 +plaintext
 INFO:root:Compliant log: {'name': 'Alice', 'email': 'cd192d68db7f5b0a6...', 'phone_number': 'fa246d0262c...'} INFO:root:Compliant log: {'name': 'Alice', 'email': 'cd192d68db7f5b0a6...', 'phone_number': 'fa246d0262c...'}
-```+</code>
  
 ---- ----
Line 158: Line 166:
 Extend the **DataPrivacyManager** class to use a different hashing mechanism, such as MD5 or SHA-512. Extend the **DataPrivacyManager** class to use a different hashing mechanism, such as MD5 or SHA-512.
  
-```python+<code> 
 +python
 class CustomHashPrivacyManager(DataPrivacyManager): class CustomHashPrivacyManager(DataPrivacyManager):
     def anonymize(self, record):     def anonymize(self, record):
Line 168: Line 177:
                 anonymized_record[key] = value                 anonymized_record[key] = value
         return anonymized_record         return anonymized_record
- +</code> 
-# Usage Example+**Usage Example** 
 +<code>
 custom_manager = CustomHashPrivacyManager(anonymization_fields=["email"]) custom_manager = CustomHashPrivacyManager(anonymization_fields=["email"])
 print(custom_manager.anonymize({"email": "user@example.com"})) print(custom_manager.anonymize({"email": "user@example.com"}))
-```+</code>
  
 **Output:** **Output:**
-```plaintext+<code> 
 +plaintext
 {'email': 'b58996c504c5638798eb6b511e6f49af'} {'email': 'b58996c504c5638798eb6b511e6f49af'}
-```+</code>
  
 --- ---
Line 184: Line 195:
 Anonymize fields conditionally, for example, only anonymize emails matching certain domains. Anonymize fields conditionally, for example, only anonymize emails matching certain domains.
  
-```python+<code> 
 +python
 class ConditionalPrivacyManager(DataPrivacyManager): class ConditionalPrivacyManager(DataPrivacyManager):
     def anonymize(self, record):     def anonymize(self, record):
Line 194: Line 206:
                 anonymized_record[key] = value                 anonymized_record[key] = value
         return anonymized_record         return anonymized_record
- +</code> 
-# Usage Example+**Usage Example** 
 +<code>
 conditional_manager = ConditionalPrivacyManager(anonymization_fields=["email"]) conditional_manager = ConditionalPrivacyManager(anonymization_fields=["email"])
 print(conditional_manager.anonymize({"email": "test@example.com", "name": "Bob"})) print(conditional_manager.anonymize({"email": "test@example.com", "name": "Bob"}))
-```+</code>
  
 --- ---
Line 205: Line 218:
 Integrate **DataPrivacyManager** into an ETL data pipeline to anonymize sensitive rows before transformation. Integrate **DataPrivacyManager** into an ETL data pipeline to anonymize sensitive rows before transformation.
  
-```python+<code> 
 +python
 class ETLPipeline: class ETLPipeline:
     def __init__(self, privacy_manager):     def __init__(self, privacy_manager):
Line 213: Line 227:
         anonymized_data = [self.privacy_manager.anonymize(record) for record in data]         anonymized_data = [self.privacy_manager.anonymize(record) for record in data]
         return anonymized_data         return anonymized_data
- +</code> 
-# Initialize Privacy Manager+**Initialize Privacy Manager** 
 +<code>
 privacy_manager = DataPrivacyManager(anonymization_fields=["email", "phone_number"]) privacy_manager = DataPrivacyManager(anonymization_fields=["email", "phone_number"])
- +</code> 
-# Pipeline Example+**Pipeline Example** 
 +<code>
 pipeline = ETLPipeline(privacy_manager=privacy_manager) pipeline = ETLPipeline(privacy_manager=privacy_manager)
 data = [ data = [
Line 225: Line 241:
 anonymized_data = pipeline.process(data) anonymized_data = pipeline.process(data)
 print(anonymized_data) print(anonymized_data)
-```+</code>
  
 **Output:** **Output:**
-```plaintext+<code> 
 +plaintext
 [ [
     {'name': 'Alice', 'email': '...', 'phone_number': '...'},     {'name': 'Alice', 'email': '...', 'phone_number': '...'},
     {'name': 'Bob', 'email': '...', 'phone_number': '...'}     {'name': 'Bob', 'email': '...', 'phone_number': '...'}
 ] ]
-```+</code>
  
 ---- ----
Line 242: Line 259:
  
 2. **Test Field Coverage:** 2. **Test Field Coverage:**
-   - Ensure all sensitive fields are listed in `anonymization_fields`.+   - Ensure all sensitive fields are listed in **anonymization_fields**.
  
 3. **Secure Logs:** 3. **Secure Logs:**
ai_data_privacy_manager.1748197649.txt.gz · Last modified: 2025/05/25 18:27 by eagleeyenebula