ai_data_privacy_manager
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| ai_data_privacy_manager [2025/05/25 18:22] – [Table of Contents] eagleeyenebula | ai_data_privacy_manager [2025/05/25 18:37] (current) – [Best Practices] eagleeyenebula | ||
|---|---|---|---|
| Line 7: | Line 7: | ||
| ------------------------------------------------------------- | ------------------------------------------------------------- | ||
| - | |||
| - | * **Anonymize sensitive fields** with hashing for irreversible protection of user data. | ||
| - | * **Log data in a privacy-compliant manner**, ensuring sensitive information is safely anonymized before logging. | ||
| - | * **Secure sensitive workflows** for regulatory compliance (e.g., GDPR, HIPAA). | ||
| - | |||
| - | The corresponding **`ai_data_privacy_manager.html`** file provides visual tutorials, examples, and compliance workflow simulations to aid newcomers in implementing secure practices in data handling. | ||
| - | |||
| - | With this module, developers can handle personally identifiable information (PII) responsibly while ensuring transparency with privacy-compliant logging. | ||
| - | |||
| - | ---- | ||
| Line 23: | Line 13: | ||
| This module provides: | This module provides: | ||
| - | | + | |
| - | | + | |
| - | | + | |
| + | * **Anonymize sensitive fields** using irreversible hashing. | ||
| + | * **Log data privacy-compliantly**, | ||
| + | * **Secure sensitive workflows** to meet GDPR, HIPAA, and related standards. | ||
| - | ---- | + | The **ai_data_privacy_manager.html** file includes: |
| + | * Visual tutorials | ||
| + | * Example use cases | ||
| + | * Compliance workflow simulations | ||
| + | Use this module to handle PII responsibly while maintaining transparency and privacy-compliant logging. | ||
| ===== Purpose ===== | ===== Purpose ===== | ||
| - | The **`ai_data_privacy_manager.py`** module provides the following benefits: | + | The **ai_data_privacy_manager.py** module provides the following benefits: |
| - | | + | |
| - | | + | |
| - | | + | |
| - | | + | |
| This module is particularly useful for applications in: | This module is particularly useful for applications in: | ||
| - | | + | |
| - | | + | |
| - | | + | |
| ---- | ---- | ||
| Line 47: | Line 44: | ||
| * **Field Anonymization: | * **Field Anonymization: | ||
| - | | + | |
| * **Privacy-Compliant Logging:** | * **Privacy-Compliant Logging:** | ||
| - | | + | |
| * **Customizable Anonymization Fields:** | * **Customizable Anonymization Fields:** | ||
| - | | + | |
| * **Error Handling and Logging:** | * **Error Handling and Logging:** | ||
| - | | + | |
| * **Integration-Friendly Design:** | * **Integration-Friendly Design:** | ||
| - | | + | |
| ---- | ---- | ||
| Line 66: | Line 63: | ||
| The **DataPrivacyManager** class provides two key methods: | The **DataPrivacyManager** class provides two key methods: | ||
| - | | + | |
| - | | + | |
| ==== 1. Anonymization ==== | ==== 1. Anonymization ==== | ||
| - | The `anonymize` method applies **SHA-256 hashing** to specific sensitive fields (e.g., | + | The **anonymize** method applies **SHA-256 hashing** to specific sensitive fields (e.g., |
| **Workflow: | **Workflow: | ||
| - | | + | |
| - | | + | |
| - | | + | |
| **Example Output:** | **Example Output:** | ||
| - | ```plaintext | + | < |
| + | plaintext | ||
| Input Data: {' | Input Data: {' | ||
| Anonymized Data: {' | Anonymized Data: {' | ||
| - | ``` | + | </ |
| ---- | ---- | ||
| ==== 2. Privacy-Compliant Logging ==== | ==== 2. Privacy-Compliant Logging ==== | ||
| - | The `log_with_compliance` method logs anonymized datasets instead of raw fields to protect sensitive information. | + | The **log_with_compliance** method logs anonymized datasets instead of raw fields to protect sensitive information. |
| **Workflow: | **Workflow: | ||
| - | | + | |
| - | | + | |
| - | | + | |
| Example Log Output: | Example Log Output: | ||
| - | ```plaintext | + | |
| + | < | ||
| + | plaintext | ||
| INFO: | INFO: | ||
| - | ``` | + | </ |
| ---- | ---- | ||
| ==== 3. Logging and Error Handling ==== | ==== 3. Logging and Error Handling ==== | ||
| - | The module uses Python' | + | The module uses Python' |
| * **Info Logs:** Capture anonymized records for audits or debugging. | * **Info Logs:** Capture anonymized records for audits or debugging. | ||
| * **Error Logs:** Track failures in anonymization or logging operations for troubleshooting. | * **Error Logs:** Track failures in anonymization or logging operations for troubleshooting. | ||
| Example Error Log: | Example Error Log: | ||
| - | ```plaintext | + | < |
| + | plaintext | ||
| ERROR: | ERROR: | ||
| - | ``` | + | </ |
| ---- | ---- | ||
| Line 117: | Line 117: | ||
| ==== Required Libraries ==== | ==== Required Libraries ==== | ||
| - | * **`hashlib`:** Standard Python library for cryptographic hashing (SHA-256). | + | * **hashlib: |
| - | * **`logging`:** Standard Python library for logging anonymization and compliance activities. | + | * **logging: |
| ==== Installation ==== | ==== Installation ==== | ||
| Line 130: | Line 130: | ||
| ==== Basic Examples ==== | ==== Basic Examples ==== | ||
| - | Anonymizing sensitive fields and logging records: | + | **Anonymizing sensitive fields and logging records:** |
| - | ```python | + | < |
| + | python | ||
| from ai_data_privacy_manager import DataPrivacyManager | from ai_data_privacy_manager import DataPrivacyManager | ||
| - | + | </ | |
| - | # Initialize the privacy manager with fields to anonymize | + | # **Initialize the privacy manager with fields to anonymize** |
| + | < | ||
| data_privacy_manager = DataPrivacyManager(anonymization_fields=[" | data_privacy_manager = DataPrivacyManager(anonymization_fields=[" | ||
| - | + | </ | |
| - | # Input dataset | + | # **Input dataset** |
| + | < | ||
| user_data = { | user_data = { | ||
| " | " | ||
| Line 144: | Line 147: | ||
| " | " | ||
| } | } | ||
| - | + | </ | |
| - | # Log anonymized data | + | # **Log anonymized data** |
| + | < | ||
| data_privacy_manager.log_with_compliance(user_data) | data_privacy_manager.log_with_compliance(user_data) | ||
| - | ``` | + | </ |
| **Example Log Output:** | **Example Log Output:** | ||
| - | ```plaintext | + | < |
| + | plaintext | ||
| INFO: | INFO: | ||
| - | ``` | + | </ |
| ---- | ---- | ||
| Line 161: | Line 166: | ||
| Extend the **DataPrivacyManager** class to use a different hashing mechanism, such as MD5 or SHA-512. | Extend the **DataPrivacyManager** class to use a different hashing mechanism, such as MD5 or SHA-512. | ||
| - | ```python | + | < |
| + | python | ||
| class CustomHashPrivacyManager(DataPrivacyManager): | class CustomHashPrivacyManager(DataPrivacyManager): | ||
| def anonymize(self, | def anonymize(self, | ||
| Line 171: | Line 177: | ||
| anonymized_record[key] = value | anonymized_record[key] = value | ||
| return anonymized_record | return anonymized_record | ||
| - | + | </ | |
| - | # Usage Example | + | # **Usage Example** |
| + | < | ||
| custom_manager = CustomHashPrivacyManager(anonymization_fields=[" | custom_manager = CustomHashPrivacyManager(anonymization_fields=[" | ||
| print(custom_manager.anonymize({" | print(custom_manager.anonymize({" | ||
| - | ``` | + | </ |
| **Output:** | **Output:** | ||
| - | ```plaintext | + | < |
| + | plaintext | ||
| {' | {' | ||
| - | ``` | + | </ |
| --- | --- | ||
| Line 187: | Line 195: | ||
| Anonymize fields conditionally, | Anonymize fields conditionally, | ||
| - | ```python | + | < |
| + | python | ||
| class ConditionalPrivacyManager(DataPrivacyManager): | class ConditionalPrivacyManager(DataPrivacyManager): | ||
| def anonymize(self, | def anonymize(self, | ||
| Line 197: | Line 206: | ||
| anonymized_record[key] = value | anonymized_record[key] = value | ||
| return anonymized_record | return anonymized_record | ||
| - | + | </ | |
| - | # Usage Example | + | # **Usage Example** |
| + | < | ||
| conditional_manager = ConditionalPrivacyManager(anonymization_fields=[" | conditional_manager = ConditionalPrivacyManager(anonymization_fields=[" | ||
| print(conditional_manager.anonymize({" | print(conditional_manager.anonymize({" | ||
| - | ``` | + | </ |
| --- | --- | ||
| Line 208: | Line 218: | ||
| Integrate **DataPrivacyManager** into an ETL data pipeline to anonymize sensitive rows before transformation. | Integrate **DataPrivacyManager** into an ETL data pipeline to anonymize sensitive rows before transformation. | ||
| - | ```python | + | < |
| + | python | ||
| class ETLPipeline: | class ETLPipeline: | ||
| def __init__(self, | def __init__(self, | ||
| Line 216: | Line 227: | ||
| anonymized_data = [self.privacy_manager.anonymize(record) for record in data] | anonymized_data = [self.privacy_manager.anonymize(record) for record in data] | ||
| return anonymized_data | return anonymized_data | ||
| - | + | </ | |
| - | # Initialize Privacy Manager | + | # **Initialize Privacy Manager** |
| + | < | ||
| privacy_manager = DataPrivacyManager(anonymization_fields=[" | privacy_manager = DataPrivacyManager(anonymization_fields=[" | ||
| - | + | </ | |
| - | # Pipeline Example | + | # **Pipeline Example** |
| + | < | ||
| pipeline = ETLPipeline(privacy_manager=privacy_manager) | pipeline = ETLPipeline(privacy_manager=privacy_manager) | ||
| data = [ | data = [ | ||
| Line 228: | Line 241: | ||
| anonymized_data = pipeline.process(data) | anonymized_data = pipeline.process(data) | ||
| print(anonymized_data) | print(anonymized_data) | ||
| - | ``` | + | </ |
| **Output:** | **Output:** | ||
| - | ```plaintext | + | < |
| + | plaintext | ||
| [ | [ | ||
| {' | {' | ||
| {' | {' | ||
| ] | ] | ||
| - | ``` | + | </ |
| ---- | ---- | ||
| Line 245: | Line 259: | ||
| 2. **Test Field Coverage:** | 2. **Test Field Coverage:** | ||
| - | - Ensure all sensitive fields are listed in `anonymization_fields`. | + | - Ensure all sensitive fields are listed in **anonymization_fields**. |
| 3. **Secure Logs:** | 3. **Secure Logs:** | ||
ai_data_privacy_manager.1748197347.txt.gz · Last modified: 2025/05/25 18:22 by eagleeyenebula
