User Tools

Site Tools


ai_data_masking

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
ai_data_masking [2025/05/25 15:54] – [Extensibility and Advanced Use Cases] eagleeyenebulaai_data_masking [2025/05/25 16:03] (current) – [Basic Example] eagleeyenebula
Line 85: Line 85:
   * Returns the modified DataFrame with the specified columns masked.   * Returns the modified DataFrame with the specified columns masked.
  
-Example Workflow:+**Example Workflow:**
  
   * Import the **DataMasking** class.   * Import the **DataMasking** class.
Line 130: Line 130:
  
 ==== Basic Example ==== ==== Basic Example ====
-Mask specific columns using the default placeholder `"[MASKED]"`.+Mask specific columns using the default placeholder **"[MASKED]"**.
  
 <code> <code>
Line 313: Line 313:
  
 ===== Conclusion ===== ===== Conclusion =====
-The **`ai_data_masking.py`** module provides fast, flexible, and secure masking capabilities for sensitive data. With its Pandas DataFrame integration, logging, and extensibility, this module is a powerful tool for ensuring data privacy in modern AI and data science workflows. Use it to safeguard sensitive columns and create secure datasets that meet the highest privacy standards.+The **ai_data_masking.py** module provides fast, flexible, and secure masking capabilities for sensitive data. With its Pandas DataFrame integration, logging, and extensibility, this module is a powerful tool for ensuring data privacy in modern AI and data science workflows. Use it to safeguard sensitive columns and create secure datasets that meet the highest privacy standards.
ai_data_masking.1748188470.txt.gz · Last modified: 2025/05/25 15:54 by eagleeyenebula