ai_data_masking
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| ai_data_masking [2025/05/25 15:54] – [Extensibility and Advanced Use Cases] eagleeyenebula | ai_data_masking [2025/05/25 16:03] (current) – [Basic Example] eagleeyenebula | ||
|---|---|---|---|
| Line 85: | Line 85: | ||
| * Returns the modified DataFrame with the specified columns masked. | * Returns the modified DataFrame with the specified columns masked. | ||
| - | Example Workflow: | + | **Example Workflow:** |
| * Import the **DataMasking** class. | * Import the **DataMasking** class. | ||
| Line 130: | Line 130: | ||
| ==== Basic Example ==== | ==== Basic Example ==== | ||
| - | Mask specific columns using the default placeholder | + | Mask specific columns using the default placeholder |
| < | < | ||
| Line 313: | Line 313: | ||
| ===== Conclusion ===== | ===== Conclusion ===== | ||
| - | The **`ai_data_masking.py`** module provides fast, flexible, and secure masking capabilities for sensitive data. With its Pandas DataFrame integration, | + | The **ai_data_masking.py** module provides fast, flexible, and secure masking capabilities for sensitive data. With its Pandas DataFrame integration, |
ai_data_masking.1748188470.txt.gz · Last modified: 2025/05/25 15:54 by eagleeyenebula
