User Tools

Site Tools


ai_data_masking

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
ai_data_masking [2025/05/25 15:53] – [Best Practices] eagleeyenebulaai_data_masking [2025/05/25 16:03] (current) – [Basic Example] eagleeyenebula
Line 85: Line 85:
   * Returns the modified DataFrame with the specified columns masked.   * Returns the modified DataFrame with the specified columns masked.
  
-Example Workflow:+**Example Workflow:**
  
   * Import the **DataMasking** class.   * Import the **DataMasking** class.
Line 130: Line 130:
  
 ==== Basic Example ==== ==== Basic Example ====
-Mask specific columns using the default placeholder `"[MASKED]"`.+Mask specific columns using the default placeholder **"[MASKED]"**.
  
 <code> <code>
Line 264: Line 264:
  
 1. **Hashing for Obfuscation:** 1. **Hashing for Obfuscation:**
-   - Replace sensitive values with hashed tokens using libraries like `hashlib`.+   - Replace sensitive values with hashed tokens using libraries like **hashlib**.
  
 **Example: Hashing Columns** **Example: Hashing Columns**
-```python+<code> 
 +python
 import hashlib import hashlib
  
Line 277: Line 278:
  
 hashed_data = hash_columns(data, columns=["Email"]) hashed_data = hash_columns(data, columns=["Email"])
-```+</code>
  
 2. **Encrypting Sensitive Columns:** 2. **Encrypting Sensitive Columns:**
-   - Use encryption for reversible masking (e.g., library `cryptography`).+   - Use encryption for reversible masking (e.g., library **cryptography**).
  
 3. **Handling Multilingual Text in Datasets:** 3. **Handling Multilingual Text in Datasets:**
Line 312: Line 313:
  
 ===== Conclusion ===== ===== Conclusion =====
-The **`ai_data_masking.py`** module provides fast, flexible, and secure masking capabilities for sensitive data. With its Pandas DataFrame integration, logging, and extensibility, this module is a powerful tool for ensuring data privacy in modern AI and data science workflows. Use it to safeguard sensitive columns and create secure datasets that meet the highest privacy standards.+The **ai_data_masking.py** module provides fast, flexible, and secure masking capabilities for sensitive data. With its Pandas DataFrame integration, logging, and extensibility, this module is a powerful tool for ensuring data privacy in modern AI and data science workflows. Use it to safeguard sensitive columns and create secure datasets that meet the highest privacy standards.
ai_data_masking.1748188416.txt.gz · Last modified: 2025/05/25 15:53 by eagleeyenebula