User Tools

Site Tools


ai_conscious_module

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
ai_conscious_module [2025/05/24 18:01] – [Basic Example] eagleeyenebulaai_conscious_module [2025/05/24 18:09] (current) – [Advanced Reflection Analysis] eagleeyenebula
Line 136: Line 136:
  
 **1. Detecting Repetitive Reflections** **1. Detecting Repetitive Reflections**
-This example demonstrates how to identify repetitive patterns or challenges logged in the `self_log`+This example demonstrates how to identify repetitive patterns or challenges logged in the **self_log**
-```python+<code> 
 +python
 consciousness = ConsciousModule() consciousness = ConsciousModule()
 +</code>
 # Log multiple reflections # Log multiple reflections
 +<code>
 reflections = ["Am I doing this correctly?", "Am I doing this correctly?",  reflections = ["Am I doing this correctly?", "Am I doing this correctly?", 
                "How can I improve efficiency?", "Am I doing this correctly?"]                "How can I improve efficiency?", "Am I doing this correctly?"]
 for reflection in reflections: for reflection in reflections:
     consciousness.reflect(reflection)     consciousness.reflect(reflection)
 +</code>
 # Assess state # Assess state
 +<code>
 state = consciousness.assess_state() state = consciousness.assess_state()
 print(f"Total Reflections: {state['total_reflections']}") print(f"Total Reflections: {state['total_reflections']}")
 print(f"Unique Reflections: {state['unique_reflections']}") print(f"Unique Reflections: {state['unique_reflections']}")
-```+</code>
  
 **Example Output:** **Example Output:**
-```plaintext+<code> 
 +plaintext
 Total Reflections: 4 Total Reflections: 4
 Unique Reflections: {'Am I doing this correctly?', 'How can I improve efficiency?'} Unique Reflections: {'Am I doing this correctly?', 'How can I improve efficiency?'}
-```+</code>
  
 **2. Saving Reflections to a File** **2. Saving Reflections to a File**
 +
 Store the AI's internal reflective state for future analysis: Store the AI's internal reflective state for future analysis:
-```python+<code> 
 +python
 with open("reflections_log.txt", "w") as f: with open("reflections_log.txt", "w") as f:
     for reflection in consciousness.self_log:     for reflection in consciousness.self_log:
         f.write(f"{reflection}\n")         f.write(f"{reflection}\n")
-```+</code>
  
 **3. Prioritizing Self-Reflections** **3. Prioritizing Self-Reflections**
 Introduce logic to classify reflections by priority based on certain keywords: Introduce logic to classify reflections by priority based on certain keywords:
-```python+<code> 
 +python
 class AdvancedConsciousModule(ConsciousModule): class AdvancedConsciousModule(ConsciousModule):
     def prioritized_reflection(self, priority_keywords):     def prioritized_reflection(self, priority_keywords):
Line 179: Line 186:
 high_priority = advanced_consciousness.prioritized_reflection(["optimize", "efficiency"]) high_priority = advanced_consciousness.prioritized_reflection(["optimize", "efficiency"])
 print("High Priority Reflections:", high_priority) print("High Priority Reflections:", high_priority)
-```+</code>
  
 **Example Output:** **Example Output:**
-```plaintext+<code> 
 +plaintext
 High Priority Reflections: ['I need to optimize my response time.', 'How can I improve efficiency?'] High Priority Reflections: ['I need to optimize my response time.', 'How can I improve efficiency?']
-``` +</code>
- +
-----+
  
 ===== Best Practices ===== ===== Best Practices =====
Line 194: Line 200:
    - Perform periodic assessments to identify recurring trends and implement improvements in real time.    - Perform periodic assessments to identify recurring trends and implement improvements in real time.
 3. **Avoid Overflowing Logs:** 3. **Avoid Overflowing Logs:**
-   - Limit the size of `self_login memory or periodically persist data to storage for long-term insights.+   - Limit the size of **self_log** in memory or periodically persist data to storage for long-term insights.
  
----- 
  
 ===== Advanced Reflection Analysis ===== ===== Advanced Reflection Analysis =====
 Use the module to perform deeper analysis: Use the module to perform deeper analysis:
-**Categorization of Thoughts:** + **Categorization of Thoughts:** 
-  - Use NLP libraries (e.g., `spaCy``NLTK`) to group reflective thoughts by sentiment, categories, or keywords. +  - Use NLP libraries (e.g., **spaCy****NLTK**) to group reflective thoughts by sentiment, categories, or keywords. 
-**Visualization:**+ **Visualization:**
   - Store reflection insights and visualize recurrent themes using tools like **Matplotlib** or **Seaborn**.   - Store reflection insights and visualize recurrent themes using tools like **Matplotlib** or **Seaborn**.
  
 Example Visualization Code (Word Frequency): Example Visualization Code (Word Frequency):
-```python+<code> 
 +python
 from collections import Counter from collections import Counter
 import matplotlib.pyplot as plt import matplotlib.pyplot as plt
 +</code>
 # Count reflection occurrences # Count reflection occurrences
 +<code>
 reflection_counts = Counter(consciousness.self_log) reflection_counts = Counter(consciousness.self_log)
  
Line 219: Line 226:
 plt.title("Reflection Patterns") plt.title("Reflection Patterns")
 plt.show() plt.show()
-``` +</code>
 ---- ----
  
 ===== Integration with Other Systems ===== ===== Integration with Other Systems =====
-The `ai_conscious_module.pycan integrate with: +The ai_conscious_module.py can integrate with: 
-**Chatbots:** Enable chatbots to assess their performance based on user feedback. + **Chatbots:** Enable chatbots to assess their performance based on user feedback. 
-**AI Pipelines:** Use reflections to identify optimization areas in ML model performance. + **AI Pipelines:** Use reflections to identify optimization areas in ML model performance. 
-**Personal Assistants:** Help assistants reflect on user preferences and improve personalizations.+ **Personal Assistants:** Help assistants reflect on user preferences and improve personalizations.
  
 ---- ----
Line 250: Line 256:
  
 ===== Conclusion ===== ===== Conclusion =====
-The **`AI Conscious Module`** script brings introspection and adaptive functionality to AI systems, enabling thoughtful self-assessment. By implementing and extending this module, developers can enhance the performance and decision-making abilities of AI within the **G.O.D. Framework**. Whether applied in education, customer service, or autonomous systems, this tool emphasizes continuous improvement and purpose-driven development.+The **AI Conscious Module** script brings introspection and adaptive functionality to AI systems, enabling thoughtful self-assessment. By implementing and extending this module, developers can enhance the performance and decision-making abilities of AI within the **G.O.D. Framework**. Whether applied in education, customer service, or autonomous systems, this tool emphasizes continuous improvement and purpose-driven development.
ai_conscious_module.1748109710.txt.gz · Last modified: 2025/05/24 18:01 by eagleeyenebula