User Tools

Site Tools


ai_anomaly_detection

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
ai_anomaly_detection [2025/05/24 14:38] – [Applications] eagleeyenebulaai_anomaly_detection [2025/06/26 18:20] (current) – [AI Anomaly Detection] eagleeyenebula
Line 1: Line 1:
 ====== AI Anomaly Detection ====== ====== AI Anomaly Detection ======
-* **[[https://autobotsolutions.com/god/templates/index.1.html|More Developers Docs]]**:+[[https://autobotsolutions.com/aurora/wiki/doku.php?id=ai_anomaly_detection|Wiki]]: [[https://autobotsolutions.com/god/templates/ai_anomaly_detection.html|Framework]]: [[https://github.com/AutoBotSolutions/Aurora/blob/Aurora/ai_anomaly_detection.py|GitHub]]: [[https://autobotsolutions.com/artificial-intelligence/anomaly-detection-module-proactive-insights-for-data-consistency/|Article]]: 
 The **AI Anomaly Detection** system is a Python-based utility that identifies outliers in datasets using statistical principles like standard deviation. This function is essential for finding anomalous data points that deviate significantly from the dataset's normal range. The **AI Anomaly Detection** system is a Python-based utility that identifies outliers in datasets using statistical principles like standard deviation. This function is essential for finding anomalous data points that deviate significantly from the dataset's normal range.
 +
 +
 +{{youtube>0m1Ivadc2PM?large}}
 +
  
 ===== Overview ===== ===== Overview =====
Line 23: Line 28:
 **Threshold for Anomalies**: **Threshold for Anomalies**:
 Data points are considered anomalies if they fall outside the range: Data points are considered anomalies if they fall outside the range:
 +<code>
 [mean - (3 * standard deviation), mean + (3 * standard deviation)] [mean - (3 * standard deviation), mean + (3 * standard deviation)]
 +</code>
 ==== 2. Logging Information ==== ==== 2. Logging Information ====
  
Line 34: Line 39:
  
 **Example Log Messages**: **Example Log Messages**:
 +<code>
 INFO: Detecting anomalies in the data... INFO: Anomalies detected: [120, -45] INFO: Detecting anomalies in the data... INFO: Anomalies detected: [120, -45]
 +</code>
 ====== Function Details ====== ====== Function Details ======
  
Line 44: Line 49:
  
 **Signature**: **Signature**:
-   python+<code> 
 +python
 def detect_anomalies(data: List[float]) -> List[float]: def detect_anomalies(data: List[float]) -> List[float]:
     """     """
Line 51: Line 57:
     :return: List of anomalies detected     :return: List of anomalies detected
     """     """
 +</code>
 ===== Examples ===== ===== Examples =====
  
Line 234: Line 240:
 3. **Visualization**: 3. **Visualization**:
 Combine detection results with visualizations for better interpretability. Combine detection results with visualizations for better interpretability.
- 
---- 
- 
 ===== Conclusion ===== ===== Conclusion =====
  
 The **AI Anomaly Detection** framework provides a robust, flexible, and extensible mechanism for outlier detection in numerical datasets. With applications ranging from real-time monitoring to preprocessing for AI pipelines, the system is a valuable tool for automated anomaly analysis. By leveraging advanced usage patterns like visualization and threshold adjustments, the functionality can be tailored to a wide range of industry applications. The **AI Anomaly Detection** framework provides a robust, flexible, and extensible mechanism for outlier detection in numerical datasets. With applications ranging from real-time monitoring to preprocessing for AI pipelines, the system is a valuable tool for automated anomaly analysis. By leveraging advanced usage patterns like visualization and threshold adjustments, the functionality can be tailored to a wide range of industry applications.
ai_anomaly_detection.1748097491.txt.gz · Last modified: 2025/05/24 14:38 by eagleeyenebula